Design Considerations for Smart Grid Management Systems

Sponsored by

By Larsh Johnson, eMeter Corp.

A rapidly evolving combination of new intelligent networks, information systems and regulations, the smart grid will allow the management of energy in real time and collaboration for energy efficiency. Utilities will migrate from an operational model designed to interact monthly with consumers to one that supports on-demand, immediate, two-way communications.

For utilities, smart grid evolution means that business process re-engineering (BPR) and information systems for grid management must commit to large-scale changes. In this environment, utilities and their information technology organizations face challenges such as:

  • Navigating the transition without impacting existing operations,
  • Connecting and extending existing information technology systems to provide the increased data and automation required,
  • Demonstrating an early return, and
  • Avoiding inflexible information technology investments.


Despite these challenges, utilities cannot wait to deploy management systems. Implementing these systems within a smart grid-ready design framework insulates utilities from complexity and risk, protecting them from those challenges listed above. In addition, the framework helps utilities seize the opportunities of this grid evolution. But what constitutes a smart grid-ready design framework? What should a utility look for?


Defining the Framework


Utilities can use the framework for smart grid ready as a top-down primer for evaluating, planning and deploying the information technology systems that will power their transition to applications such as advanced metering, customer service, demand response and distribution grid automation.

The framework is a blueprint defined by five components:

1. Support for real-time grid management,
2. Support for process interoperability and data exchange,
3. Support for Web-based consumer engagement,
4. Inclusion of tools to manage deployment, operation and maintenance of advanced metering infrastructure (AMI), home area network (HAN) and other systems, and
5. A design that reflects service-oriented architecture (SOA) standards.


The need for real-time grid management is driven by requirements for real-time monitoring and control of the distribution grid, time-based energy pricing and two-way consumer/supplier participation in the process. Effective adoption must be based on a robust platform that can handle event-driven distribution of information and execution of business process in a way that is consistent, reliable and auditable.

In a smart grid context, meter data based on monthly, even daily, estimates is not useful. Interval data must be validated continuously and made immediately available, and exceptions, alerts or messages must be processed on demand. In the new world, demand response will require the marriage of time-based rates with real-time consumer usage patterns.

Future demand response and consumer usage capabilities not withstanding, timing is imperative with a utility’s first smart grid step: meter-to-cash applications, which link meter installation, provisioning, interval data validation, billing and customer service processes in a dependent fashion. Just-in-time events must be handled and current data must be available at the precise time required by each process. If operations are based on stale data, the process will be inefficient.

To move from inefficient to efficient in the context of the smart grid, utilities must extend their information technology systems to support process interoperability and data exchange within and between enterprises.

Many utility information technology systems are monolithic applications designed to manage single, discrete processes such as billing or asset management. Process interoperability is driven by manual or periodic batch data exchange and synchronization. To manage events and exchange data across systems within the enterprise in an end-to-end flow—feeding each dependent process at the optimal time—utilities must re-engineer toward a more real-time, integrated view.

In an extended enterprise model in which several companies are involved in energy distribution, process execution must span company boundaries, and access to data must be managed to each entity’s authorized view. A meter operator might have to deliver data from a common source to distribution companies, energy retailers and to a market settlement agency, each with differing requirements.

These applications require interoperability among multiple legacy customer information systems, asset management, logistics systems and potentially multiple AMI/smart meter infrastructures. A meter data management system is the core component to enable this integration, supporting multiple instances of customized process flow.


The Rest of the Story


A key smart grid tenet is to empower consumer interaction for optimal energy management. Early attempts to communicate with consumers about their energy consumption have come in the form of tips or energy analysis presented on individual, monthly bills. These steps, however, fail to effectively tie usage and behavior to cost or environmental impact in a way that builds understanding or encourages conservation.

Smart grid-savvy utilities will use the Web to get consumers more deeply involved. To better encourage behavior changes, consumers must be clearly and simply shown the correlations among usage, cost and environmental impact. They must have immediate access to answers for their questions regarding their options to minimize or optimize their energy usage to reduce costs.

Presenting timely usage data allows consumers to associate the cost of their bills with their usage of individual appliances or heating and cooling systems. Time-of-use rate plans can be applied to show the savings benefits of behavior change. Real-time delivery of alerts allows users to respond appropriately to grid events. Users are familiar with and trust peer-rating social tools such as eBay’s user seller ratings, and tools such as these will be invaluable in encouraging trust in peer recommendations. Integrated communications with users across a variety of media remains key to influencing behavior.

A key to cost reduction and accelerated AMI introduction with the smart grid means deploying the right tools: ones that optimize deployment logistics. Tools should automate and control the end-to-end AMI deployment in an automated, closed-loop fashion, from planning and installation through provisioning and cutover. Validation of individual meter operation, data and the complete billing feed process should be supported—as well as automated cutover—after successful validation. The system should have provisions for exception handling and closed-loop integration with work management and other logistics to drive optimized problem resolution. Finally, off-the-shelf interfaces should exist to simplify system integration.

The evolution to smart grid will require BPR for adopting utilities. Adopters cannot afford to rewrite systems each time new regulations and requirements emerge or when new technologies enter their smart grid community.

SOA is the systems foundation to support iterative BPR. For ongoing operations, it enables the real-time processing, interoperability and scalability. SOA removes dependencies that paralyze traditional, monolithic business systems. With an SOA, application processes can be more easily coupled and decoupled, and required information flows freely within and across reengineered systems. Equally important, SOA environments can be extended with new capabilities without retrofit. An effective SOA should break the hardwired connections between business process, data, applications and infrastructure.

All SOA have common attributes such as:

  • Interfaces that insulate process from physical infrastructure,
  • Applications that provide independent business process rules and data exchanges,
  • Real-time messaging for inter-process communication, and
  • The ability to integrate with non-SOA systems.


Many solutions promote the importance of SOA-compliant interfaces. Although these are a necessary component, by themselves they are insufficient to achieve the full benefit of SOA. Interface-only implementations merely wrap monolithic code in a more maintainable interface. Complete architectures go beyond this to support full-process interoperability and reengineering.

Providing a mechanism to create and manage business rules enables change in process flow without having to rewrite applications. A common repository where data and events are collected and managed can act as the central hub to provide a consistent view of data between applications.

In addition, real-time messaging provides a common, standards-based backbone for real-time information flow between systems. This component is essential to enabling interoperability, as well as scaling to manage the high data and event traffic the smart grid will drive.

The majority of utilities’ in-place systems are not SOA-compliant, so it is critical that the introduction of SOA systems allows for coexistence. Interfaces to legacy systems should support interactions mandated by a range of legacy application and data models. This includes translating data into types and formats that legacy systems can use without having to make extensive changes to the legacy systems.

When implementing smart grid management systems, successful utilities will first seek to achieve greater flexibility and efficiency for existing, discrete operations. Building to a smart grid-ready framework can ensure required capabilities are supported and systems evolution can take place seamlessly without disruption to existing operations and customer service.

Larsh Johnson is president and CTO of eMeter Corp.


More PowerGrid International Issue Articles


PowerGrid International Articles Archives


View Power Generation Articles on


Sponsored by


Justices rule against EPA power plant mercury limits


The Supreme Court says that the EPA overreached.

Basin Electric wins international employer of the year award

06/29/2015 Basin Electric previously received the international award in 2005 and the Dakotas Chapter 72 Employer of the Year Award i...

Duke Energy to excavate 12 more coal ash basins in North Carolina


The material would be safely reused in lined structural fills or permanently disposed in lined landfills.

Building Energy to build 2 solar photovoltaic plants in Egypt

06/29/2015 The $200 million project was awarded by the New & Renewable Energy Authority of the Ministry of Electricity & Rene...

CG bags 2 electricity networks orders in Philippines

06/29/2015 The scope of work for both projects includes design, manufacture, supply, construction and installation and commissioning ...

AEP taps Siemens to modernize HVDC system Welsh in Texas

06/29/2015 Siemens will upgrade its 20-year-old system by installing new control and protection technologies, replacing the cooling, ...

Michigan utilities work to comply with power plant pollution rule

06/26/2015 The EPA estimates costs of around $9.6 billion for power plants to install and operate equipment to remove pollutants


Solar + Storage: Capturing Opportunities and Overcoming Challenges

The convergence of solar and energy storage applications is under way. The combined application o...

Storage Enters the Global Stage: What’s the value proposition for your region?

For electricity storage, the events of the last two years have shown that the skepticism around t...

How to deploy mobile forms + devices to speed up field service processes & reporting

Overcoming the pain points associated with any process is much simpler and more cost effective th...

Beyond Integration: Three Dynamics Reshaping Renewables and the Grid

In a unique industry research initiative, DNV GL gathered views from over 1,600 energy sector par...

Engaging the Small and Mid-sized Business (SMB) Marketplace

This session will outline how Duke Energy leveraged Voice of Customer insights, previous experien...



Decontamination & Decommissioning

Decommissioning strategy development, cost estimates, plant modifications; system and building decontamination; RV segmentation; large component re...

Cavitation Peening

AREVA developed its innovative solution for asset management, significantly extending the life of reactor components. Cavitation Peening is a perma...

Nuclear Horizontal Modular Storage (NUHOMS®)

AREVA TN’s NRC-licensed NUHOMS® system ensures the highest safety and lowest dose performance. With no tipping, tripping and sliding, you have the...

ATRIUM™ 11 for BWR Fuel

ATRIUM™ 11 design fuel – in operation since 2012 – provides significantly lower fuel rod power levels for power uprate margins, operational flexib...


EtherMate® Industrial Ethernet - IO Modules

LioN-M ProfiNet device with 16 digital I/O channels, channels can be used universally as inputs or outputs, M12 socket, ro...

OFL280 FlexTester - Handheld OTDR

AFL's OFL280 FlexTester offers an unmatched combination of fiber test functions, ease-of-use, portability, and value.

ADSS Mini-Span® Fiber Optic Cable

AFL Mini-Span® All-Dielectric Self-Supporting (ADSS) cable is designed for outside plant aerial and duct applications in l...

TRM® 2.0 - Test Results Manager PC Analysis and Reporting

Test Results Manager 2.0 (TRM® 2.0) is an all-in-one analysis, viewer and reporting tool designed for use with NOYES fiber...


View more Job Listings >>

POWERGRID International

March 2015
Volume 20, Issue 3


January 2015
Volume 93, Issue 1