The New Breeds of HVDC

Sponsored by

From Staff Reports

Since its commercial introduction in the 1950s, high-voltage direct current (HVDC) systems have proved themselves as a viable alternative to alternating current systems for the bulk transmission of electric power. In some instances, HVDC can be the preferred mode of electric power transport when compared to AC transmission. Some applications that are particularly well-suited to the use of HVDC include: long undersea cable links, overhead lines greater than 600 km, and connecting asynchronous grids or networks. The virtues of HVDC and some of its more notable installations are outlined in this issue’s previous feature (pages 20-24).

Click here to enlarge image

Due to technological innovation from companies such as ABB and Siemens, this 50-plus-year-old technology has gotten a facelift in recent years. ABB’s HVDC Light and Siemens HVDC Plus make up the “new breed” of HVDC, and these relatively new offerings are proving to be quite effective in filling needs where neither AC power transmission or traditional HVDC are feasible.

Traditional HVDC vs. the New Breeds

While based on tried-and-true traditional HVDC technology, both HVDC Plus and HVDC Light have some fundamental differences that may make them the preferred choice in certain applications. The differences between traditional HVDC and Siemens’ HVDC Plus are outlined in Table 1 on page 28.

Click here to enlarge image

Some of the differences between traditional HVDC and ABB’s HVDC Light include:

Power range: Traditional HVDC is most cost-effective in the high power range, above approximately 250 MW. HVDC Light, on the other hand, comes in unit sizes ranging from a few tens of MW at the low end to an upper range 1,200 MW and ±320 kV.

DC transmission circuit: The DC transmission circuit for traditional HVDC can be an overhead line or a DC cable. The cables are normally mass-impregnated (MIND) cables suitable for HVDC with a copper conductor and insulation made of oil-impregnated paper. The vast majority of classical DC cables are submarine cables.

The DC transmission circuit for HVDC Light, on the other hand, is made by extruded polymer cables both for land transmissions (underground) and across water (submarine). HVDC Light is by nature bipolar. The DC circuit is not connected to ground. Therefore two cables are needed. HVDC Light can also be built with overhead lines.

Modular: HVDC Light is based on a modular concept with a number of standardized sizes for the converter stations. Most of the equipment is installed in enclosures at the factory. Conventional HVDC is always tailor-made to suit a specific application.

Independence of AC network: HVDC Light does not rely on the AC network’s ability to keep the voltage and frequency stable. Unlike conventional HVDC, the short circuit capacity is not important. HVDC Light can feed load into a passive network.

Active and reactive power control: Traditional HVDC terminals can provide limited control of reactive power by means of switching of filters and shunt banks and to some level by firing angle control. But this control requires additional equipment and therefore extra cost.

The HVDC Light control makes it possible to create any phase angle or amplitude, which can be done almost instantly. This offers the possibility to control both active and reactive power independently.

Mike Bahrman, ABB’s marketing manager for HVDC products, noted that traditional HVDC will remain the workhorse for long-distance bulk power transmission and large asynchronous interconnections because traditional HVDC operates at higher voltages.

“But HVDC Light is getting heavier now,” Bahrman said. “We’re up to ±320 kV. For overhead we can go higher; we can go up to ±640 kV.”

Market for HVDC’s New Breeds

ABB’s Bahrman noted that a number of HDVC Light systems are already in operation around the world. He talked about two HVDC Light implementations in Australia:

The Terranora interconnector (previously called Directlink) was commissioned in 2000. It is a 180-MW underground HVDC Light system, which connects the New South Wales and Queensland electricity grids in Australia, allowing power to be traded between the two states. The link was built by TransÉnergie Australia, a subsidiary of the Canadian utility Hydro Quebec and Country Energy, an Australian energy provider. The Terranora interconnector consists of three HVDC Light independent links of 60 MVA each operating at 80 kV. The six underground cables are 59 km each.

The second HVDC Light project in Australia is the Murraylink 220-MW interconnector between the Riverland in South Australia and Sunraysia in Victoria. Murraylink was commissioned in 2002 and is a 180-km underground high-voltage power link. Murraylink benefits both South Australia and Victoria by enabling electricity trading in Australia’s deregulating power market. Murraylink has used existing corridors and required no private easements, nor use of private land.

Bahrman said the most recent HDVC Light installation is the Estlink HVDC Light system, which links Estonia and Finland. It was commissioned in 2006 and runs both undersea and underground for its 130-km length. HVDC Light was chosen for Estlink due to the need for long underground and undersea spans, as well as its ability to connect non-synchronous AC systems.

ABB’s HDVC Light has two installations in the U.S. One is the 36 MVA back-to-back HVDC Light link at Eagle Pass, Texas, which was commissioned in 2000; the other is Cross Sound Cable, an HVDC Light underwater cable link between Connecticut and Long Island, N.Y., which was commissioned in 2002.

According to Cristen Schimpf of Siemens Power T&D, the first commercial installation of that company’s HVDC Plus will be the Trans Bay Cable Project, which seeks to connect the City of Pittsburg, Calif., with downtown San Francisco via a submarine cable along the San Francisco Bay. Trans Bay is currently under construction, and the commercial operation will commence in early 2010, Schimpf said.

“The market (for HVDC Plus) in the U.S. as well as internationally is growing rapidly,” Schimpf said. “HVDC Plus applications come into play more and more where there is a need is for bringing bulk power into load centers (such as big cities) where space is a constraint.”

Bahrman agreed, noting that the footprint for his company’s HVDC Light offering is around a quarter that of traditional HVDC, making it well-suited for congested urban installations.

Sponsored by

CURRENT ARTICLES

Appalachian Power requests energy efficiency programs for Virginia

10/24/2014

Appalachian expects the six programs to save about 43,000 MWh in energy usage

Electric distribution investment up from past decades

10/24/2014 Electricity distribution systems differ from transmission systems, which have also experienced increased investment over t...

Toledo Edison builds transmission line to serve Home Depot warehouse

10/24/2014

The new 1.65-million square foot facility will be used primarily for online order fulfillment 

Rwanda to switch on peat-fired power plant

10/24/2014

The $36 million project will produce cheaper electricity compared to hydro or thermal power 

Has privatization failed Texas utility customers?

10/24/2014 Relative electricity prices have increased dramatically, and dangerously lower electrical system reliability is the result...

ETT proposes Del Sol to JackieHoward transmission line in South Texas

10/23/2014 Electric Transmission Texas is planning to construct a new $24.5 million, 345-kV transmission line to connect the 200 MW L...

Gamesa delivers 74 MW wind farm to Grupo Mexico

10/23/2014 Gamesa currently has 1 GW of installed wind capacity in Mexico, with another 70 MW in the pipeline at the Dos Arbolitos pr...

ON DEMAND WEBCASTS

Architecting Communication Networks for Smart Grids

This webinar will provide the essentials of communication networking to meet the challenges of th...

The Power of Behavioral Design: Lessons for Energy Efficiency Providers

Behavioral design principles are key differentiators when it comes to influencing consumer behavi...

3D BIM for Substations—Driving Efficiency from Design Through Operation and Maintenance

In this webinar, PESTECH will describe their transition to intelligent substation design and its ...

High Availability Networks. Application of IEC6439-3 Protocols for IEC61850 Process Bus implementation

Networks can now be built for the first time with genuinely uninterrupted data communication betw...

Understanding Moisture Dynamics in Power Transformers

While the need to measure moisture in power transformers has been well documented and is universa...

EL&P BUYER'S GUIDE PRODUCTS

MITEM Corp

Provides CRM solutions for regulated U.S. public utilities. The product, MitemView integrates differently designed systems to share critical data a...

Resources on Demand

Manages resource requests, tracks personnel movements, and supports lodging/logistics during a power restoration event.

Smart Grids

Quanta is contributing to its customers' smart grid initiatives by installing technology on power networks to provide energy management solutions f...

Horizontal Directional Drilling

With 28 small, mid-sized and large drilling rigs, Quanta Pipeline Services is one of the largest horizontal directional contractors in the world fo...

FEATURED ENERGY JOBS

View more Job Listings >>

POWERGRID International

March 2014
Volume 19, Issue 3
1403PG-cover

ELECTRIC LIGHT & POWER

January 2014
cover